
Abstract. We discuss problems and features of current
semiempirical molecular orbital techniques and test
some of the approximations and assumptions used.
Prerequisites for a ‘‘next generation’’ technique include
orthogonalization corrections, effective core potentials
and an implicit dispersion term. However, validation of
experimental parameterization data using density func-
tional theory or the Gaussian 2 approach reveals sig-
nificant errors in some cases. Developers of future
methods will need to validate all their parameterization
data and may no longer be able to parameterize for
heats of formation at 298 K, but may need to use Born–
Oppenheimer binding energies. We also suggest that
there is no inherent reason that semiempirical techniques
should not reproduce hydrogen bonding and show that
the Gaussian potentials added to the core–core terms in
AM1 and the PMn methods actually weaken hydrogen
bonding, rather than strengthening it.

Keywords: Molecular orbital theory – Modified neglect
of differential overlap – MNDO/d – AM1 – PM3

Introduction

Semiempirical molecular orbital (MO) theory in its
current incarnation is generally based on the neglect of
diatomic differential overlap (NDDO) formalism [1]. In
essence, current techniques such as AM1 [2, 3] and PM3
[4, 5] are minor modifications of Dewar and Thiel’s
modified neglect of differential overlap (MNDO) [6, 7].
Modifications to the original MNDO formalism have
tended to be in the form of a change in the parameter-
ization strategy [4, 5] and the addition of ‘‘correcting’’
terms to two-center energies, usually the core–core term

[2, 3, 4, 5, 8], but also as an additional classical torsional
term to increase amide C–N bond rotation barriers [4,
5]. Significant advances in NDDO theory include the
addition of d orbitals to the minimal s,p Slater basis [9,
10] and the formulation of an orthogonalization cor-
rection [11], both of which were introduced by Thiel and
his group. An interesting intermediate neglect of dia-
tomic overlap (INDO) [12] based technique, SINDO/1
[13], has been described in detail and appears to perform
well, but has not found the wide acceptance of the
NDDO-based techniques.

Recently, extensions of established techniques to new
elements (AM1, PM3 [14]), a new parameterization
(PM5 [14]) and an extension of PM3 with d orbitals
(PM3-tm [15]) have appeared, but details have not yet
been published. A further essentially unpublished tech-
nique, SAM1 [16], apparently differs significantly from
the original MNDO ansatz. In laudable contrast to these
undocumented methods, Voityuk and Rösch [17] have
published an AM1(d) parameter set for molybdenum,
Hutter et al. [18] a new magnesium parameterization for
AM1, Brothers and Merz [19] sodium parameters for
AM1 and PM3 and Jorgensen et al. [20] a new additivity
scheme for heats of formation. We are now in the
interesting situation that the probably most widely dis-
tributed (at least in its earlier versions) semiempirical
program, MOPAC, offers unpublished AM1 and PM3
parameters for sodium but not the published parameter
sets. The methods and elements available in our semi-
empirical program VAMP are listed with their literature
references in Table 1.

We have previously [21] speculated on the future of
semiempirical MO theory in the light of the consistent
reports of its death. It suffices here to point out that there is
really no competition between semiempirical theory and
more ‘‘respectable’’ methods such as ab initio or density
functional theory (DFT) because semiempirical methods
are generally used for applications that would not be
accessible to the more expensive methods. In good re-
search, semiempirical theory is eitherusedas apreliminary
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investigative tool or on systems forwhich ab initio orDFT
would be far too slow, although this is not always true.
There are some alternatives to semiempirical theory for
large systems. Self-consistent-charge density functional
tight binding theory [22] looks promising for proteins, but
is not yet available for many elements. Empirical valence
bond theory [23] has also recently enjoyed a wave of
popularity as a means of treating reactions within an
essentially classical mechanical framework. However,
semiempirical techniques have played an important role
in thedevelopmentof continuumsolvationmodels [24, 25]
and are particularly promising for very large applications
using either hybrid quantum mechanics/molecular
mechanics [26, 27, 28] or linear scaling divide-and-
conquer [29, 30] or localized orbital [31] techniques.

Because of the unsatisfactory situation that new
semiempirical parameterizations are not being published
for commercial reasons, that very few groups are actually
working on improvements to the basicNDDO theory and
that, on the contrary, modifications to AM1 and PM3
often involve a classical two-center potential added to the
quantummechanical technique, we decided to investigate
the behavior and characteristics of NDDO-based theory
and of possible improvements that are theoretically jus-
tifiable. MNDO forms the basis of these investigations
because it is largely free of ‘‘correcting’’ influences, such as
the Gaussian modification to the core–core energy, and
thus offers the best chance to observe the true character-
istics of the underlying theoretical framework. In partic-
ular, our work is directed towards establishing a ‘‘next
generation’’ NDDO-based technique, which will not be
presented here. Rather, the aim of the current work is to
provide the foundation for the development of such a
method, in order to be able to plan the theoretical exten-
sions to MNDO. First, however, we review the problems
of current methods and their possible solutions.

Systematic errors of current methods

Rotation barriers and conformations

Rotation barriers for both normal single bonds and
formally single bonds in conjugated p systems are con-

sistently too low in MNDO, AM1, PM3, etc. AM1
performs slightly better for p-rotation barriers than the
other two methods, but still underestimates them sig-
nificantly. The problem is particularly relevant for amide
bonds, for which PM3 only gives a rotation barrier of
about 3 kcal mol)1. This problem was ‘‘fixed’’ by
adding an optional classical torsional potential for
these bonds in MOPAC.

A related problem is that of the relative stabilities of
alternative conformations at single bonds, either for
problem systems such as peroxides and hydrazines or
for more basic problems like gauche-butane and trans-
butane. The latter problem is very fundamental because
the gauche–trans energy difference is the basis of much of
the conformational behavior of cycloalkanes and their
derivatives. The gauche–trans energy difference (experi-
mentally 0.9 kcal mol)1) is calculated to be 0.6, 0.7 and
0.5 kcal mol)1 forMNDO, AM1 and PM3, respectively.
Although the three methods only underestimate the en-
ergy difference slightly, they make the carbon skeleton of
cyclobutane planar and cyclopentane and cyclohexane
flatter than their experimental structures. MNDO also
calculates a planar ring skeleton for cyclopentane.

The orthogonalization correction introduced by
Kolb, Thiel and Weber [11] is derived in terms of an
atom-based pseudopotential that is added to the one-
electron matrix, Hcore. The final semiempirical method
contains a two-center and a three-center energy correc-
tion; the latter is given here for review purposes:
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l, k and q refer to atomic orbitals at centers A, B and C.
Slk is the overlap between the two atomic orbitals, blk is

Table 1. Parameters implemented inVAMP

Hamiltonian Elements

MNDO H [6], He [67], Li [68], Be [69], B [70], C [6], N [6], O [6], F [71], Mg [72], Al [73], Si [74], P [75], S [76],
Cl [77], K [78], Ca [79], Zn [80], Ge [81], Br [82], Sn [83], I [84], Hg [85], Pb [86]

MNDO/c [87] H, C, N, O
AM1 H [2], B [88], C [2], N [2], O [2], F [89], Na [19], Mg [18], Al [90], Si [91], P [92], S [93], Cl [89], Zn [94]a, Ge [95],

Br [89], Sn [96], I [89], Hg [97]
PM3 H [4], Li [98], Be [99], B [100], C [4], N [4], O [4], F [4], Na [19], Mg [99], Al [4], Si [4], P [4], S [4],

Cl [4], Ca [100], Zn [99], Ga [99], Ge [99], As [99], Se [99], Br [4], Cd [99], In[99], Sn [99], Sb [99],
Te [99], I [4], Hg[99], Tl [99], Pb [99], Bi [99]

MNDO/d H [6], He [67], Li [68], Be [69], B [70], C [6], N [6], O [6], F [71], Na [10], Mg [10], Al [10]b, Si [101], P [10],
S [10], Cl [10], Zn [10], Br [10], Cd [10], I [10], Hg [10]

AM1* H [2], C [2], N [2], O [2], F [89], P [37], S [37], Cl [37]

aAlternative parameters are also available for Zn [15]
bThe reported parameters are in error. We thank Alexander Voityuk for the correct parameters
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the resonance integral, an empirical function with the
four parameters bA

l , b
B
k , a

A
l and aBk . GAB

1 and GAB
2 are the

arithmetic mean values of atomic parameters. Finally,
H loc

xx is the matrix element of Hcore in a local coordinate
system. The two-center correction has the same
functional form with different atomic parameters.

This correction significantly improves the perfor-
mance of MNDO-type methods for the conformations
of alkanes and cycloalkanes, but it is not clear whether
such extensions also cure the problem for p systems. It is
also possible that paying careful attention to rotation
barriers during the parameterization may be an ade-
quate solution to this problem. As far as we know,
rotation barriers have never been addressed specifically
during parameterization.

Nitrogen pyramidality

The pyramidality and inversion barriers at nitrogen
generally present problems for the current methods.
AM1, for instance, finds amide nitrogens to be planar,
but also makes amines less pyramidal than they should
be and underestimates their barriers to inversion. This
problem is particularly severe for tertiary amines. PM3,
on the other hand, often makes amide nitrogens pyra-
midal. We discuss this problem later.

Hydrogen bonds

MNDO does not reproduce hydrogen bonding. This was
remedied in MNDO/H [8] by additional Gaussian terms
in the core–core repulsion, a practice that was also
adopted for AM1 and PM3. The expression for the
core–core repulsion, Ecore–core(i)j), between atoms i and
j then takes the form

Ecore�core i� jð Þ
¼ ZiZjcss 1þ exp �aiRij

� �
þ exp �ajRij

� �
þ Gi þ Gj

� �
;

ð2Þ

where Zi and Zj are the core charges of i and j, respec-
tively, css is the monopole–monopole integral ii j jjh i as
defined for MNDO [6, 7], Rij is the distance between the
two atoms, ai and aj are element-specific parameters and
Gi and Gj are the element-specific Gaussian terms, which
are defined as

Gi ¼
X

n

Kin exp Lin Rij �Min

� �2h i
Q; ð3Þ

where n is the number of Gaussian functions defined for
element i (usually 2–4), Kin , Lin and Min are element-
specific parameters that define the magnitude, position
and width of the nth Gaussian function for element i.

However, AM1 does not reproduce the geometries
of hydrogen-bonded systems correctly, tending to give
bifurcated structures. PM3 reproduces these geometries

better, but underestimates the strengths of hydrogen
bonds. Jug and Geudtner [32] have found that addi-
tional p orbitals for hydrogen fix this problem in SIN-
DO/1, but it is not yet clear that this is a universal
solution. Extending the basis set for hydrogen would be
a computationally expensive solution, but would be
affordable in view of the progress that can be expected in
hardware performance. Other approaches to the prob-
lem of hydrogen bonding include a specific parameteri-
zation of PM3, known as PM3BP [33] for nucleic acid
base pairs and by a different type of modification of the
core–core repulsion term [34, 35] that avoids the prob-
lems inherent in the use of Gaussian-modified terms.

Weak interactions

A weakness that semiempirical methods share with DFT
is their inability to reproduce weak interactions (i.e.
dispersion). This may be part of the problem with
hydrogen bonding (see later), but is unlikely to be the
whole cause. Apart from the obvious effect that van der
Waals complexes are not bound, the lack of dispersion
may also lead to an inherent size-consistency problem
(see later). Dispersion energy can become a significant
contribution to the stability of large molecules. A clas-
sical van der Waals potential is apparently included in
PM5 as a simple two-center classical term [14].

Phosphorus

Even the extensive reparameterization apparently used to
develop PM5 [14] was not able to improve the perfor-
mance for phosphorus compounds. The solution to this
problem is, however, known. MNDO/d performs signif-
icantly better than the s,p techniques for phosphorus, so
that in this case the inclusion of d orbitals in the phos-
phorus basis is necessary. Phosphorus, however, is cer-
tainly not the only element forwhich this is true (see later).
It is also now clear that some of the experimental data on
which the PM3 parameterization (and possibly also that
for PM5) was based are in error by roughly 140 kcal
mol)1 in the heat of formation [36]. Bogus experimental
data of this type can skew parameterizations significantly,
although this situation should be detectable by inspection
of the results of the parameterization.

Transition metals

Transition metals remain the holy grail of NDDO-based
semiempirical MO theory. An extension of MNDO/d to
transition metals has not yet appeared. PM3-tm [15] is
apparently a simple extension of PM3 with d orbitals to
transition metals. However, it was only parameterized to
reproduce X-ray structures without the usual energies,
ionization potentials and dipole moments. Energies
usually dominate the error function in semiempirical
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parameterizations, so the success of this parameteriza-
tion remains uncertain. Voityuk and Rösch [17] report
good results for AM1(d) for molybdenum, but molyb-
denum remains the only metal for which this technique
has been reported. However, our recent work on AM1*
[37] suggests that the Voityuk–Rösch parameter set for
molybdenum is of very high quality.

Perhaps surprisingly, the INDO-based methods
SINDO/1 [13] and ZINDO [38] have been the most
successful for transition metals. However, the latter is
unsuitable for geometry optimizations, which seriously
limits its usefulness. The success of these two methods,
however, suggests strongly that good performance for
transition metals can also be achieved with NDDO-
based techniques.

Factors in the development of new methods

Experimental data

Tabulated values of experimental data are not always
correct. Spurious experimental data points, especially for
heats of formation, can dramatically affect the parame-
terization of a semiempirical method. A selection of 21
compounds for which we have performed either large
basis set DFT [B3LYP/6-31+G(3df,2dp)//B3LYP/
6-31+G(d) in this paper] or G2 [39] calculations in order
to check the reliability of experimental data is given in
Table 2.

Table 2 demonstrates several potential problems with
experimental data, most of which can, however, be

solved by validation with higher levels of theory. The
first example shown in Table 2 is cubane, which has been
a consistent problem in semiempirical parameteriza-
tions, the calculated heat of formation being typically in
error by about 40 kcal mol)1, leading to some specu-
lation about the quantity’s accuracy. Our G2 result
supports the experimental result and points to a sys-
tematic weakness of current MNDO-type methods. In
cases such as this, it is important to confirm the reli-
ability of the experimental datum before concluding that
there is a fundamental flaw in the calculational method.
In contrast, there are also plenty of examples of com-
pounds for which the experimental data are very likely
to be in error, sometimes by relatively large amounts.
Examples of these shown in Table 2 are Cl2O2, HSO3,
SO2F, SOF3 and SOF4, SCl6, SO2Cl, P4O10, (OCN)3PO,
PCl4, F2PO and Cl2PO. The frequent occurrence of
sulfur and phosphorus compounds in this exemplary list
perhaps explains the poor performance of semiempirical
methods for these compounds.

The second class of compounds is that for which
there is more than one experimental measurement, and
for which sometimes different values have been used for
different parameterizations. Perhaps the most extreme
example is P4O6, for which experimental heats of for-
mation of )529.2 [40], –375.5 [41] and –378.01 kcal
mol)1 [42] have been reported. Thus, PM3, for which
DH0

f = )529.2 kcal mol)1 was used in the parameteri-
zation, gives a heat of formation of –511 kcal mol)1,
whereas AM1 and MNDO/d give –321.5 and
–375.9 kcal mol)1, respectively. Engels et al. [36] re-

Table 2. Comparison of experimental and calculated heats of formation (kcal mol)1) for selected compounds. M=MNDO,
Md=MNDO/d, A=AM1, P=PM3

Formula Compound Used for
Parameterizing

Exp. 1 Exp. 2 Exp. 3 G2 DFT Rec. Change Comments

C8H8 Cubane M:A:P 148.7 148.1 148.7 G2, see also
Refs. [58, 59, 60]

HCl2
) Hydrogen dichloride anion P )142.0 )101.4 )103.2 )100.2 )41.8 NIST

ClO3 O3Cl Md 37.0 50.5 53.1 43.1 )6.1 Ref. [61]
Cl2O2 ClOOCl M 12.7 29.7 32.8 29.7 )17.0 G2, this work
Cl2O7 O3ClOClO3 Md 65.0 82.1 102.9 61.5 3.5 Ref. [61]
CF2Cl2 Difluorodichloromethane M:A:P:Md )114.1 )117.5 )117.9 )122.9 )111.8 ?a

CFCl3 Fluorotrichloromethane M:A:P:Md )64.0 )64.1 )68.1 )73.0 )59.8 ?a

HSO3 HOSO2 Md )98.0 )59.3 )60.5 )59.3 )38.7 G2, this work
CH4N2S Thiourea A )6.0 4.8 0.9 5.5 )11.5 NIST
F3S Sulfur trifluoride P )130.0 )103.6 )107.4 )116.7 )9.8 Ref. [62]
F2S2 FSSF M:P:Md )54.5 )68.4 )80.4 )72.6 )72.2 )68.4 13.9 As used for

MNDO/d
SO2F SO2F P:Md )102.3 )113.2 )87.2 )86.0 )87.2 )15.1 G2, this work
SOF3 SOF3 P )185.1 )137.2 )136.7 )137.2 )47.9 G2, this work
SOF4 SOF4 P:Md )228.0 )235.5 )207.0 )195.5 )207.0 )21.0 G2, this work
SCl6 Sulfur hexachloride P )19.8 21.9 45.5 21.9 )41.7 G2, this work
SO2Cl SO2Cl P )66.4 )45.9 )45.1 )45.9 )20.5 G2, this work
P4O6 Phosphorus trioxide A:P:Md )529.2 )375.9 )378.01 )367.44 )375.9 )153.3 See Ref. [32]
P4O10 Phosphorus pentoxide dimer A:P:Md )672.0 )694.1 )632.3 )632.3 )39.7 DFT, this work
O3C3N3PO (OCN)3PO A:Md )158.6 )64.3 )64.3 )94.3 DFT, this work
OF2P OPF2 P )213.6 )171.1 )171.5 )171.1 )42.5 G2, this work
PCl4 Phosphorous tetrachloride P )80.5 )55.9 )53.8 )55.9 )24.7 G2, this work
OPCl2 OPCl2 P )109.9 )70.9 )71.3 )70.9 )39.0 G2, this work

aAs discussed in the text, given the uncertainty of the calculations and experimental data, it is unclear what the recommended value should
be
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cently reported ab initio calculations on P4O6 from
which a heat of formation around –350 kcal mol)1 can
be deduced. Our DFT calculations give a value of
–367.4 kcal mol)1. It is therefore extremely likely that
PM3 was parameterized using an experimental datum
that is in error by about 140 kcal mol)1. Another such
example, but less extreme, is FSSF. However, when
there is relatively little spread in the experimental values,
high-level calculations can only be valuable if the high-
level methods are known to be reliable for the given class
of compounds. The currently available techniques have,
for instance, been parameterized with target values
ranging from –114.1 to –117.9 kcal mol)1 for CF2Cl2
and from –64 to –69 kcal mol)1 for CFCl3. Such cases
could lead to an inability to reproduce valid trends in the
data, even though the magnitude of the error is small. As
has been noted previously, there are unfortunately lim-
itations to G2 and G3 methods as well, specifically in the
case of halogenated compounds. Even the inclusion of a
spin–orbit coupling term in the G2 and G3 theories
does not completely correct this problem, making pre-
dictions for these compounds unreliable. There are thus
still limits to the theoretical validation of experimental
data.

The final class of compounds is that for which new
experimental values are available (Cl–H–Cl), Cl2O7,
thiourea and SF3 in Table 2). In most cases, but not all,
the new experimental value agrees well with the G2
calculations.

The examples shown in Table 2 are admittedly among
the most extreme that we have found. Nevertheless, it is
clear that almost all experimental datamust be validated if
we are to improve the accuracy of current semiempirical
techniques. There are some cases, such as the chloroflu-
orocarbons, for which we cannot assign reliable values,
but theoretical validation can at least correct gross errors.
Currently, however, we cannot create a dataset of heats of
formation with a reliability better than about ±3 kcal
mol)1. However, if asked, almost all computational
chemists would answer that they would be very happy
with a semiempirical method that performs as well as
a moderately sized ab inito or DFT calculation, for
example,B3LYP/6-31+G(3df,2dp)//B3LYP/6-31+G(d).
However, the mean unsigned error in the calculated heats
of formation at this level compared with experiment for
our dataset of 382 silicon, phosphorus, sulfur and chlo-
rine compounds is 11.1 kcal mol)1, compared with
11.8 kcal mol)1 for PM3. That much of this error can be
attributed to the experimental data is demonstrated by
the fact that the mean unsigned error between G2 and
DFT for the 245 compounds of our dataset for which we
currently have both data available is only 5.3 kcal mol)1,
compared with 12.2 kcal mol)1 for PM3.

Parameterization for heats of formation

An important approximation lies at the heart of most
parameterizations of semiempirical techniques. What, of

course, is calculated is the Born–Oppenheimer total
energy, ETOT. This is converted to a Born–Oppenheimer
total binding energy, EB, by subtracting the Born–
Oppenheimer energies of the constituent atoms:

EB ¼ ETOT �
X

n

En; ð4Þ

where n is the number of atoms in the molecule and En is
the Born–Oppenheimer energy of atom n.

In a breathtaking approximation, EB is then equated
to the enthalpy of atomization at 298 K, DH298

ATOM, which
is given by

DH298
ATOM ¼ DH0

f �
X

n

DH298
f ðnÞ; ð5Þ

where DH0
f is the standard heat of formation of the

molecule and DH298
f nð Þ is the heat of formation of atom

n. The calculated heat of formation is then given as

DH0
f ¼ ETOT �

X

n

En � DH298
f nð Þ

� �
: ð6Þ

Implicit in this equation is the assumption that the zero-
point vibrational energy and the thermal energy of a
molecule at 298 K can be treated as the sum of a series of
increments assigned to each atom. Even if this assump-
tion is justified, the parameterization procedure must be
able to compensate for the implicit vibrational contri-
butions present in DH0

f but not in EB. Hicks and Thiel
[43] tested this approximation in 1986 for a limited (36
compounds) set of small hydrocarbons for which
experimental frequencies were available and found that it
did not introduce additional errors. However, advances
in hardware and software and the advent of hybrid DFT
techniques that allow the accurate calculation of vibra-
tional frequencies for a wide set of functional groups now
allow us to investigate this question more closely.

We calculated the B3LYP/6-31+G(d) [44, 45] vibra-
tional frequencies for a dataset of 273 compounds
containing H, C, N and O and tested the validity of
the atom-additivity assumption by multiple linear
regression. The resulting regression equation

ZPE ¼ 6:801NH þ 3:672NC þ 2:781NN þ 2:459NO; ð7Þ

where NH, NC, NN and NO are the numbers of hydrogen,
carbon, nitrogen and oxygen atoms in the molecule,
respectively, reproduces the DFT zero-point energies
with a standard deviation of 2.3 kcal mol)1, superfi-
cially confirming that DH0

f can be used for parameteri-
zation without much loss of accuracy.

The correlation between B3LYP/6-31+G(d) calcu-
lated zero-point energies and those given by Eq. (7) is
shown in Fig. 1. The figure clearly shows that there is a
problem with the approximation embodied by Eq. (7).
The slope of the line is 5% too low and the intersect is
around 3.6 kcal mol)1. In fact, if we allow a constant
term in the regression equation, the standard deviation
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between the B3LYP and the additive zero-point energies
decreases by about 1 kcal mol)1:

ZPE¼�4:588þ7:169NHþ3:900NCþ3:712NNþ2:856NO:

ð8Þ

The standard deviation given by Eq. (8) is 1.27 kcal
mol)1, the slope 1.000 and the intersect 0.000. Fig. 1
therefore suggests that the heat of formation approxi-
mation should lead to the highest accuracy around the
center of the size (around the zero-point energy) range of
the parameterization dataset, but that there should be
systematic deviations for very large or very small com-
pounds (i.e. those with zero-point energies close to zero
or near or above the upper limit of the parameterization
dataset).

A further feature of the data shown by Fig. 2 is that
certain classes of compounds, in this case all those with a
nitro group, deviate systematically from the regression
equation. This must lead to systematic deviations in any
parameterization based on the heat of formation or, even
worse, to a skewing of the optimized parameters to
accommodate the outlying class of compounds. As shown
later, this is particularly relevant for nitro compounds.

Moreover, such a parameterization is applicable only
for cases where the molecular strucure is a minimum and
thus is not applicable for other points on the potential-
energy surface, such as transition states.

Parameterization for EB

The dataset of 273 C, H, N and O compounds was used
for two identical parameterizations, except that in one

case the target energies were heats of formation and in
the other EB values. The results of the two parameter-
izations are shown in Table 3 and in Fig. 3.

Table 3 suggests that there is no advantage in using
EB, rather than DH0

f . This result agrees with those of
Hicks and Thiel [43]. The mean unsigned error and the
standard deviation between experimental and calcu-
lated energies are actually larger for the EB dataset
than for DH0

f . However, the most negative deviation
and the mean signed error are all smaller for the EB

dataset. It is tempting to interpret these numbers as
meaning that the EB parameterization is ‘‘physically
more reasonable’’ (as it should be purely on the basis
of the physics behind it), but this is not really justified.
However, a careful analysis of the data reveals patterns
that suggest that using EB is after all the better strat-
egy.

Fig. 3 allows a comparison of the errors for individ-
ual compound in the two datasets. The points have been
color coded from light gray (low) to black (high)
according to the zero-point energies calculated for the
corresponding compounds. In this case the zero-point
energies are essentially a measure of the size of the
compound. The vertical and horizontal reference lines
give roughly the limits of the errors attributable to the
zero-point-energy error for this dataset. Figure 3 allows
us to draw several important conclusions.

Firstly, the errors given by the heat of formation
model correlate fairly well (r2=0.75) with those given by
the EB model. The range of errors is roughly a factor of
5 larger than that expected to arise from the heat of
formation approximation. The compounds that give the
largest improvement between the DH0

f and EB models
are given in Table 4.

The largest outliers of the DH0
f model are improved

significantly in the EB model. The error for cubane, for
instance, is reduced by 10 kcal mol)1, but still remains
the largest outlier. Both states of O2, peroxides and

Fig. 2. The residuals between the B3LYP zero-point energies and
those calculated by Eq. (7) against the value of the zero-point
energy (B3LYP). Nitro compounds are shown as black bars, all
others as gray bars

Fig. 1. The correlation between B3LYP/6-31+G(d) calculated zero-
point energies and those given by Eq. (7) for the 273 compounds of
the C, H, N, O dataset. The solid line shows the regression between
the two and the dashed line perfect agreement
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compounds in which nitrogen is bound to three oxygens
all improve significantly, as do six-membered nitrogen
aromatics, anhydrides, lactones and cyanides. Many of
these compounds are well-known problem cases for
semiempirical theory. More interesting, however, are
the compounds that become significantly worse in the
EB model than in the DH0

f model; these are shown in
Table 5.

Aromatic compounds, water and the hydronium ion,
hydrazine and two rather puzzling examples, ethylene
glycol and glycerine trinitrate, all give larger errors in the
DH0

f model, but all other compounds in this class con-
tain at least one nitro group. This is clearly because the
nitro compounds are outliers in the zero-point-energy
correlation, as shown in Fig. 2. One of the great ironies
of semiempirical theory is that a large number of nitro
compounds were placed in the PM3 parameterization set
[4, 5] in order to improve performance for these com-
pounds; however, these compounds introduce significant
errors if the DH0

f approximation is used. In the case
when the DH0

f approximation is used, it compensates the
inherent tendency of s,p-basis NDDO theory to under-
estimate the stability of these compounds by a system-
atic deviation from the additive zero-point-energy scale.

What is the reason for the inability of s,p-basis
NDDO theory to describe nitro groups? A clue is given
by ab initio calculations with and without d orbitals in
the basis set. Although such comparisons have in the
past caused long specious discussions as to ‘‘whether d
orbitals are involved in bonding’’, for instance in sulfur
compounds [46], they do provide strong evidence as to
whether polarization functions are necessary to describe
particular bonding patterns correctly. The N–O bond
lengths in nitromethane, for instance, are calculated to
be 0.03 Å longer at RHF/6-31G(d) than at RHF/6-31G.
The total d-orbital population at nitrogen is 0.3e) using
a Mulliken population analysis [47] and 0.1e) using a
natural population analysis [48], far higher than for the
carbon and the oxygens. Qualitatively, it is easy to see
that a strong contribution of a nitrogen d orbital to the
highest p MO of the nitro group can provide significant
stabilization, as shown in Scheme 1.

If the previous comments are true, the results for car-
boxylate anions should also become worse when EB is
used rather than the DH0

f approximation. This is found to
be the case: the error for the formate and acetate anions
increases from 3.3 and 10.6 kcal mol)1, respectively for
the DH0

f approximation to 9.4 and 18.1 using EB.

The idea that d orbitals might be necessary for
nitrogen (and by analogy carbon and oxygen) is
attractive from the known weaknesses of current
methods, although it would mean considerable extra
computational expense. The problems outlined earlier
concerning the pyramidality of nitrogen centers, for
instance, are known from the early days of ab initio
theory and were cured by adding polarization functions
to the basis set [49].

Treatment of the nucleus and nonvalence electrons

The treatment of the nucleus and its associated non-
valence electron shells has been the subject of many
modifications over the years. The traditional approxi-
mation as used in most NDDO-based techniques simply
treats the frozen core as a nuclear charge reduced in
magnitude by the number of nonvalence electrons. It has

Table 3. Statistics of the deviations between the parameterizations
for DH0

f and EB. All energies are given in kcal mol)1

DH0
f

EB

Most positive deviation 36.9 37.6
Most negative deviation )58.2 )45.5
Mean unsigned error 9.0 10.3
Mean signed error )3.3 )0.9
Standard deviation 12.4 14.0

Fig. 3. Scatter plot of the errors between calculated and experi-
mental energies for DH0

f and EB. The target energies were used for
two different parameterization runs in which all other parameter-
ization data and optimization variables were the same. The vertical
and horizontal reference lines give roughly the limits of the errors
attributable to the zero-point-energy error for this dataset

Scheme 1. Possible involvement of nitrogen polarization functions
in the bonding in nitro compounds
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been clear since the development of MNDO [6, 7] that
this approximation leads to poor results and so the core–
core term is traditionally modified. More specific mod-
ifications were introduced for MNDO/H [8], AM1 [2, 3]
and PM3 [4, 5] in the form of varying numbers of
Gaussian functions and for MNDO/d [9, 10] modifica-
tions of the core–core term for specific combinations of
elements are used. The latter technique appears to give
better results, but in some ways represents a step back
towards the element-pair specific parameterization of
MINDO/3 [50].

Probably the most promising improvement to current
theories in this respect is to use effective core potentials
[51] as, for instance, in SINDO/1 [13] or in the OMn
techniques introduced by Thiel, Kolb and Weber [11].

Dispersion

Intermolecular van der Waals interactions are
obviously important for weak complexes. However,
intramolecular dispersion energies may also become
significant for large molecules. This is demonstrated by
the data shown in Fig. 3. There is a clear trend for
compounds with low zero-point energies (i.e. small
molecules, those color coded in light gray) to be cal-

culated to be too stable, whereas larger molecules (dark
gray to black points) cluster in the region where both
the DH0

f and the EB models calculate the compounds to
be too unstable.

There are several potential reasons for this, but the
most likely is the effect that we know to be missing
from the theory, dispersion. However, rather than use a
purely classical two-center potential, as has apparently
been added to PM5 [14], we prefer to add a London-
type term to the Hamiltonian. This can either be added
post-self-consistent field (SCF), as in our current
implementation, or included in the SCF iterations. Our
dispersion correction uses our parameterized version
[52] of the variational polarizability treatment sug-
gested by Rivail and coworkers [53]. We have intro-
duced a partitioning scheme that allows us to calculate
additive atomic polarizabilities [54] and can easily be
extended to ‘‘atomic orbital polarizabilities’’ [55]. While
this additive polarizability model is arbitrary in the
same way that population analyses are, it does provide
useful access to a dispersion correction via the London
formula for the interaction energy between two atoms
A and B [56]:

U ð6Þdisp � �
UAUB

4 UA þ UBð Þ TabTabaAaB; ð9Þ

Table 4. Compounds for which
the EB parameterization
performs significantly better
than that for DH0

f . DEB and D0
f

are the errors (kcal mol)1) for
the EB and DH 0

f
parameterizations, respectively
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where a� represents the mean polarizability of atom A or
B, Tab is an interaction tensor and the factors U can be
estimated using the Slater–Kirkwood approach

UA �
ffiffiffiffiffiffiffi
NA

�aaA

r
; ð10Þ

where NA is the effective number of valence electrons
in atom A and aA is its mean polarizability1. We [55]

have implemented such a scheme as a post-SCF
addition to the electronic energy within the usual
MNDO-like framework and are investigating a
self-consistent scheme in which the dispersion interac-
tion is built into the SCF iterations. An important
advantage of this ansatz compared with simple
isotropic two-body classical potentials is that it takes
the effects of polarizability anisotropy into account.
The dispersion interactions must be scaled at close
range, where the London formula breaks down, using
a scaling function, f(r), suggested by Elstner et al. [58]
and given by

Table 5. Compounds for which
the EB parameterization
performs significantly worse
than that for DH0

f . DEB and D0
f

are theerrors (kcal mol)1) for
the EB and DH 0

f
parameterizations, respectively

1For exact definitions of T and a detailed description of the London
formula and alternatives, see Ref. [57]
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f ðrÞ ¼ 1� exp �3:0 r
r0

� 	7
" #( )4

; ð11Þ

where r is the distance and r0 is defined by a cubic mean
rule based on standard radii for the elements.

Thus, after a simple parameterization, the energies
and geometries of hydrocarbon van der Waals com-
plexes, for which high level ab initio data are available,
can be reproduced well. The minimum-energy geome-
tries for two different orientations of the methane:ethane
dimer compared to published ab initio data [59] are
shown in Fig. 4 and the geometries and energies of two
alternative conformations of the benzene dimer, again
compared to ab initio data [60], are shown in Fig. 5.

The influence of d orbitals

Thiel andVoityuk [9, 10] have demonstrated the need for d
orbitals in the basis in order to describe heavier elements
correctly. This need is confirmed impressively by the poor
performance of PM5, which presumably does not have d
orbitals, for phosphorus compounds [14].

One-electron energies

In principle, the one-electron energies for s, p, and d
orbitals for minimal basis set NDDO calculations need
not be parameterized, as they are known spectroscopi-
cally. However, these parameters have traditionally been

treated as variables in the modified NDDO methods, so
they may be considerably different from their experi-
mental values. An important example is hydrogen, for
which the experimental value for Uss is –13.59844 eV,
compared with parameterized values shown in Table 6.

Thus, in all cases Uss for hydrogen is significantly
(from 2.2 to 0.5 eV) less negative than the experimental
value. This makes hydrogen a worse acceptor than it
should be. Hydrogen that is a bad acceptor cannot be
expected to make proper hydrogen bonds, a systematic
weakness of current NDDO-based semiempirical tech-
niques. However, this does not seem to be the reason for
the lack of hydrogen bonds in MNDO (see later).

It is useful to consider the history of the hydrogen-
bond problem in semiempirical MO-theory. MNDO
(Uss=)11.9 eV) was unable to reproduce hydrogen
bonds at all. In order to correct this problem without
altering the rest of the parameterization, Burschkin and
Isaev [8] introduced additional Gaussian terms into the
core–core energy to give MNDO/H. This modifica-
tion was adopted by Dewar for AM1. Although AM1
(Uss=)11.4 eV) yielded hydrogen bonds, it did not
reproduce the linear hydrogen-bond linkage that results
from the lone pair to r*(H–X) antibonding donor–
acceptor interaction. We propose that the hydrogen-
bonding energy in AM1 results largely from the
(anisotropic) modification in the core–core energy.
When the geometry of hydrogen bonds was emphasized
in the PM3 parameterization, USS decreased to
)13.1 eV, the lowest value found for all common
NDDO-based methods.

However, Uss proves not to be the sole culprit of this
failure when we investigate hydrogen-bonding behavior
more closely. We removed the Gaussian core–core
functions for oxygen and hydrogen from the standard
AM1 parameterization for this review. The structure
obtained for the water dimer is shown in Fig. 6.

The quasi-linear geometry of the OÆÆÆH–O linkage is
reproduced (the OÆÆÆH–O angle is 180.0�) and the OÆÆÆH
distance is short (1.349 Å; the best current estimate is
about 1.95 Å [61]). The dimerization energy is 10 kcal
mol)1, considerably larger than the most recent experi-
mental value [61] of 4.85 kcal mol)1. Thus, the Gauss-
ian terms in AM1 weaken hydrogen bonds, and do not
strengthen them, and make AM1 give the wrong
geometry. The situation is similar for PM3: removing
the Gaussian terms from the standard PM3 parameter
set shortens the OÆÆÆH distance to 1.558 Å and increases

Fig. 4. Calculated structures and energies of the methane:ethane
dimer

Fig. 5. Calculated structures and energies of the benzene dimer

Table 6. Uss(H) and fs(H) values for different parameterizations
and their performance for hydrogen bonds

Parameterization Uss(H)
(eV)

fs(H) Hydrogen bonds

MNDO )11.906 1.332 Absent
MNDO/c )12.114 1.360 Absent
AM1 )11.396 1.188 Bifurcated
PM3 )13.073 0.968 Geometry correct,

too weak
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the dimerization energy to –6.5 kcal mol)1. Thus, par-
adoxically, the Gaussian terms introduced to be able to
reproduce hydrogen bonds in MNDO/H actually
weaken the hydrogen bonding in PM3 and AM1.

What then is the reason why MNDO cannot repro-
duce hydrogen bonds (even if we modify the core–core
terms in the same way as in MNDO/d) but why AM1
and PM3 actually overestimate hydrogen-bond
strengths in their ‘‘virgin’’ incarnations without Gauss-
ian functions? As already mentioned, our first candidate
was Uss for hydrogen; however, this proved not to be the
only important parameter. Rather, the exponent of the
hydrogen 1s orbital follows (or causes) the trends in
hydrogen-bonding behavior for the different methods.
Table 6 also shows the values used for fs for hydrogen in
different parameterizations and relates them to how the
method reproduces hydrogen bonds.

The data appear to reveal a trend. In order to test
this, we used the spectroscopic value for Uss(H), reduced
the value of fs for hydrogen in the standard MNDO-
parameterization to 1.0 and compensated by adding an
MNDO/d-like term to the core–core repulsion, which is
shown in Eq. (12):

Ecore i� jð Þ ¼ ZiZjq
0
ss exp �aijrij

� �
: ð12Þ

We set the value of a for O–H interactions to 3.0. The
resulting structure for the water dimer is shown in
Fig. 7. The O–H–O angle (180�) and the H...O distance
(1.80 Å) are now quite reasonable. The dimerization
energy is –4.7 kcal mol)1.

Furthermore, we can tune the structure of the water
dimer simply by changing the value of fs for hydrogen.
Very compact hydrogen 1s orbitals prevent the forma-
tion of hydrogen bonds, which are reproduced correctly
with a more diffuse hydrogen basis set. This observation
is consistent with Jug’s finding that p orbitals on
hydrogen (which are more diffuse than s) reproduce

hydrogen bonding. Our results suggest, however, that we
may not need polarization functions on hydrogen. Our
conclusion is that there is no fundamental reason why
semiempirical methods should not perform well for
hydrogen bonds.

Conclusions and outlook

In this article, we have tried to examine the current situ-
ation and the potential of semiempirical methods objec-
tively. Our discussion suggests that there are no
fundamental reasons why semiempirical MO theory is
inherently unable to treat hydrogen bonding or transition
metals, the two main problems faced by current tech-
niques.On the contrary, attributing the poor performance
ofMNDOfor hydrogen bonds to a deficit in the core–core
term seems to have created the ‘‘problem’’ hydrogen
bonding. The Gaussian terms in the AM1 and PM3
core–core terms do not help make hydrogen bonds,
they actually weaken them. Similarly, the success of
ZINDO [38], SINDO/1 [13] and more recently Voityuk
and Rösch’s molybdenum parameters for AM1(d) [17]
suggest that transition metals may also not be inherently
difficult.

Next generation methods, however, will need some
improvement over the current MNDO-generation. We
suggest that the following factors may play a significant
role in the next generation of NDDO-based methods:

1. The orthogonalization corrections introduced by
Thiel and his groups [11] for the OMn methods are
an important factor in improving performance for
rotation barriers, conformational equilibria, struc-
tural details and many other aspects.

2. Extending the basis set with d orbitals will certainly
be necessary for elements heavier than silicon, and
may considerably increase the accuracy when added
to some first-row elements.

Fig. 6. The structure obtained for the water dimer using the
standard AM1 parameters but with the experimental value for USS

for hydrogen and without any Gaussian terms to modify the core–
core potential

Fig. 7. The structure obtained for the water dimer using the
standard MNDO parameters for oxygen with the modified
hydrogen parameters specified in the text
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3. Ideally, next-generation methods will pay more
attention to the magnitudes of the one-electron
energies of the atomic orbitals, and perhaps even fix
them at the spectroscopic values. There is no hard
evidence that this is essential, but current methods
make, for instance, hydrogen up to 2 eV too elec-
tropositive, which must affect performance for all
other elements. The success of ZINDO [38] and the
AM1(d) molybdenum parameterization [17], both of
which use spectroscopic values, supports this view.

4. Effective core potentials, already in use for SINDO/1
[13] and OMn [11], should improve performance for
heavier elements.

5. Some form of extra treatment of dispersion will be
necessary, not only to improve performance for weak
interactions, but also to remove the inherent size
inconsistency outlined earlier.

6. It may be of advantage for accurate methods to
parameterize for EB, rather than for DH0

f .
7. Experimental data may already not be accurate en-

ough for highly parameterized methods, especially
for the elements of the second row. Careful valida-
tion, at least for geometries and energies, using either
DFT or an extrapolation scheme like G2 or G3, is
absolutely essential for future accurate methods.

We feel strongly that a next-generation NDDO
technique can best be developed by a concerted effort of
the relatively few groups working in this area. To this
end, we have undertaken to publish all of our methods
completely and will also make our parameterization
data freely available.
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60. Tsuzuki S, Lüthi HP (2001) J Chem Phys 114:3949–3957
61. Goldman N, Fellers RS, Brown MG, Braly LB, Keoshian CJ,

Leforestier C, Saykally RJ (2002) J Chem Phys 116:10148–
10163, and references therein

62. Jursic BS (2000) THEOCHEM 499:137–140
63. Castano O, Notario R, Abboud JLM, Gomperts R, Palmeiro

R, Frutos LM (1999) J Org Chem 64:9015–9018
64. Ball DW (1996) THEOCHEM 364:183–188
65. Sicre JE, Cobos CJ (2003) J Mol Struct (THEOCHEM)

620:215–226
66. Herron JT (1987) J Phys Chem Ref Data 16:1–6
67. Kolb M, Thiel W (1993) J Comput Chem 14:37–44
68. Thiel W (1982) QCPE Bull 2:63
69. Dewar MJS, Rzepa HS (1978) J Am Chem Soc 100:777–784
70. Dewar MJS, McKee ML (1977) J Am Chem Soc 99:5231–

5241
71. Dewar MJS, Rzepa HS (1978) J Am Chem Soc 100:58–67

72. Voityuk AA (1987) Zh Strukt Khim 28:128–131
73. Davis LP, Guidry RM, Williams JR, Dewar MJS, Rzepa HS

(1981) J Comput Chem 2:433–445
74. Dewar MJS, Healy EF, Stewart JJP, Friedheim J, Grady GL

(1986) Organometallics 5:375–379
75. Dewar MJS, McKee ML, Rzepa HS (1978) J Am Chem Soc

100:3607
76. Dewar MJS, Reynolds CH (1986) J Comput Chem 7:140–143
77. Dewar MJS, Rzepa HS (1983) J Comput Chem 4:158–169
78. Havlas Z, Nick S, Bock H (1992) Int J Quantum Chem

44:449–467
79. Bliznyuk AA, Voityuk AA (1988) Zh Strukt Khim 29:156–157
80. Dewar MJS, Merz Jr KM (1986) Organometallics 5:1494–

1496
81. Dewar MJS, Grady GL, Healy EF (1987) Organometallics

6:186–189
82. Dewar MJS, Healy EF (1983) J Comput Chem 4:542–551
83. Dewar MJS, Grady GL, Stewart JJP (1984) J Am Chem Soc

106:6771–6773
84. Dewar MJS, Healy EF, Stewart JJP (1984) J Comput Chem

5:358–362
85. Dewar MJS, Grady GL, Merz KM Jr, Stewart JJP (1985)

Organometallics 4:1964–1966
86. Dewar MJS, Holloway MK, Grady G, Stewart JJP (1985)

Organometallics 4:1973–1980
87. Thiel W (1981) J Am Chem Soc 103:1413–1420
88. Dewar MJS, Jie C, Zoebisch EG (1988) Organometallics

7:513–521
89. Dewar MJS, Zoebisch EG (1988) THEOCHEM 180:1–21
90. Dewar MJS, Holder AJ (1990) Organometallics 9:508–511
91. Dewar MJS, Jie C (1987) Organometallics 6:1486–1490
92. Dewar MJS, Jie C (1989) THEOCHEM 187:1–13
93. Dewar MJS, Yuan YC (1990) Inorg Chem 29:3881–3890
94. Dewar MJS, Merz KM Jr (1988) Organometallics 7:522–524
95. Dewar MJS, Jie C (1989) Organometallics 8:1544–1547
96. Dewar MJS, Healy EF, Kuhn DR, Holder AJ (1991)

Organometallics 10:431–435
97. Dewar MJS, Jie C (1989) Organometallics 8:1547–1549
98. Anders E, Koch R, Freunscht P (1993) J Comput Chem

14:1301–1312
99. Stewart JJP (1991) J Comput Chem 12:320–341
100. Yu J, Hehre WJ (1995) Wavefunction, Irvine, CA
101. Thiel W, Voityuk AA (1994) J Mol Struct 313:141–154

266


